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Abstract

Semantics-free, word-based information retrieval is thwarted

by two complementary problems. First, search for relevant
documents returns irrelevant items when all meanings of a

search term are used, rather than just the meaning intended.
This causes low precision. Second, relevant items are missed
when they are indexed not under the actual search terms,
but rather under related terms. This causes low recall. With
semantics-free approaches there is generally no way to im-
prove both precision and recall at the same time.

Word sense disambiguation during document indexing
should improve precision. We have investigated using the
massive Word Net semantic network for disambigu at ion dur-
ing indexing. With the unconstrained text of the SMART

ret rieval environment, we have had to derive our own con-
tent description from the input text, given only part-of-

speech tagging of the input.
We employ the notion of semantic distance between net-

work nodes. Input text terms with multiple senses are dis-

ambiguated by finding the combination of senses from a set
of contiguous terms which minimizes total pairwise dist ante
between senses. Results so far have been encouraging. Im-
provement in disamblguation compared with chance is clear

and consist ent.

Keywords: Information retrieval, indexing, word sense

disambiguation, semantic networks, free-text.

1 Introduction

Semantics-free, word-based information retrieval is thwarted

by two complementary problems. First, search for relevant
documents returns irrelevant items when all meanings of a

search term are used, rather than just the meaning intended.
This is the polysemy/false positives/low precision problem.
Second, relevant items are missed when they are indexed
not under the actual search terms, but rather under related
terms. This is the synonymy/false negatives/low recall prob-
lem. With semantics-free approaches there is generally no
way to improve both precision and recall at the same time.
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Increasing one is done at the expense of the other [Salton

and McGill, 1983; van Rijsbergen, 1983]. For example, cast-

ing a wider net of search terms to improve recall of relevant

items will also bring in an even greater proportion of irrele-
vant items, lowering precision.

There is a many-to-many mapping between word forms

and word meanings. A single word form can have multiple
meanings, and a single meaning can be expressed by multi-
ple word forms. Both of these multiplicities cause problems
for any approach to content search based on word forms.
We believe that in order to do near-human level retrieval we
must go beyond words and get at meanings. Text disam-
liguation during indexing should improve precision by com-
bating polysemy [Krovetz and Croft, 1992]. We are looking

into reducing the ambiguity of word forms during index-
ing by taking advantage of semantic networks. A number

of these networks already exist and their implementation is

fairly straightforward.
As part of a larger research project exploring the ex-

ploitation of explicit semantics for overcoming both the pol-
ysemy and synonymy problems, we have performed prelim-

inary investigations of document indexing using a massive
semantic network, Word Net. Word Net is a network of word

meanings con netted by a variety of lexical and semantic

relations. Over 3.5,000 word senses are represented in the

noun portion of Word Net alone. We have been working with
WordNet in the SMART information retrieval environment.

In the unconstrained text of the SMART environment, no

index terms have been assigned [Buckley, 1985]. We have

had to derive our own content description from the input

text, given only part-of-speech tagging of the input.

Employing the notion of semantic distance between net-
work nodes, we have run a series of experiments. Input text

terms with multiple senses have been disambiguated by find-
ing the combination of senses from a set of contiguous terms

which minimizes total pairwiae distance between senses. Re-
sults so far have been encouraging. Improvement in dis-
amblguation compared with chance is clear and consistent,
strongly suggesting that semantics-baaed indexing is worth
pursuing further for transcending the polysemy problem. It
is competitive with word-based approaches. A number of

these have focused on only a few fixed terms whose senses
were to be distinguished, rather than on unconstrained text

[Lesk, 1986; Wilks et al., 1989; Voorhees et al., 1992].
In the following sections we will discuss the research en-

vironment, network-based disambigu at ion, the experiments
performed and results obtained.
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2 Research Environment

The current project uses the SMART information retrieval
environment. In SMART, documents do not have keyword
descriptors. Instead, one must do one’s own indexing of

content. We are investigating using semantics for word sense
disambiguation during document indexing.

Semantics are snpplied by the Word Net lexical/semantic
database developed at the Cognitive Science Laboratory at
Princeton University [Miller et al., 1990; Miller, 1990]. Of
particular relevance and usefulness for our research is the

noun portion of WordNet, which contains over 35, OOOword
meanings represented as network nodes called “synsets” (syn-

onym sets). Each sense of a word maps to a distinct synset.
For example, one sense of the noun “strike” maps to (hit rap

strike tap) which IS-A (impact bump thump blow); another

maps to (strike work-stoppage) which IS-A (direct-action).
We work with the Time Magazine article collection, since

it is the least specialized and technical, because W70rdNet is

a gener~ Engbsh lexicon.
With SMART, the words in the documents are converted

to lower case and parsed into strings. They can be stemmed
down to base forms; e.g., “stemmed” and “stems” both be-

come “stem. ” Input words can also be labeled by part of
speech, which is a feature that we took advantage of. Al-
though the part-of-speech tagger employed was not infalli-

ble, it was accurate enough to give us a good working set of

nouns to serve as input to semantic processing.
One aspect of this input editing process which is a source

for limiting the effectiveness of our efforts is the filtering
out of terms. SMART uses a list of “stopwords,” words

to be ignored as “contentless.” For example, prepositions,

conjunctions, and articles are considered extraneous. After
stopwords have been removed, and non-nouns removed from
what remains, very little of the original article is left. So, we
are working with a sparse sample of the original text by the
time we get to decide which sense of each noun is intended.
Nouns found in WordNet are the final distillation that we
begin to work with during disambiguation.

The following example illustrates the filtering process. It

uses an excerpt from Time document 1, shown after succes-
sive filtering steps.

After conversion to lowercase (part-of-speech tagging is
omitted for readability; the first jour words are actually the

title):

the allies after nassau in december 1960, the U.S . first
proposed to help nato develop its own nuclear strike force .

but europe made no attempt to devise a plan last week, as
they studied the nassau accord between president kennedy

and prime minister macmillan, europeans saw emerging the
first outlines of the nuclear nato that the u .s . wants and

will support . it all sprang from the angle-u .s . crisis over
cancellation of the bug-ridden skybolt missile, and the U.S

offer to supply britain and france with the proved polaris
(time, dec . 28).

After stopword removal:

allies . proposed nato develop nuclear strike force made
attempt devise plan . week studied accord president kennedy
prime minister macmillan emerging outlines nuclear nato .
support sprang anglo crisis cancellation bug ridden skybolt

missile offer supply britain france proved polaris time dec

Nouns in WordNet:

allies strike force attempt plan week accord president
prime minister outlines support crisis cancellation bug mis-
sile france polaris time

WordNet’s noun portion haa fairly rich connectivity as
well as obvious comprehensiveness. The WordNet noun nodes
are connected by nine relations. Eight of these form four
pairs of complementary or inverse relations, while one is its
own inverse. There is actually a tenth relation that is im-

plicit in the network structure, but does not label any net
edges because it is intranode rather than internode. The

relations are:

synonymy (has same meaning as; intranode)
hypernymy (is a)
hyponymy (hae inst ence)

holonymy (is pert of, is substance in,
is member of; 3 relations)

meronymy (has part, contains substance,

has member; 3 relations)
entonymy (is complement of; self-inverse)

Hypernymy and hyponymy are the strictly hierarchical links.
The holonymy/meronymy relations can also be considered
“vertical” relations. Vertical relations are asymmetrical and

order items. Synonymy and antonymy are ‘horizontal,”

symmetrical, non-ordering relations (and of course are non-

hierarchical).

3 Net-based Disambiguation

We have tried a variety of approaches to term disambigua-

tion, all based on minimizing an objective function utilizing
semantic dist ante between topics in Word Net. It is outside
the scope of this paper to explain the distance determination
logic. We will, however, describe the salient aspects of the
network edge weightin~ scheme because this background is-- -
necessary for discussion of the experiments
work weights were varied.

3.1 Edge weighting

Each edge consists of two inverse relations.

where- the net-

Each relation
type has a weight range between its own rnin and max. The
point in the range for a particular arc depends on the number

of arcs of the same type leaving the node. This is the t~pe-
specijic janout (TSF) factor. TSF reflects dilution of the

strength oj connotation between a source and target node

as a function of the number of like relations that the source

node has.l The two inverse weights for an edge are averaged.
The average is divided by the depth of the edge within the

overall “tree.” Thm process is called depth-relative scaJing
and it is based on the observation that only-siblings deep in
a tree are more closely related than only-sibfings higher in
the tree.

Definition 1

The edge between adjacent nodes A and B has distance
or weight

1This factor takes into account the possible asymmetry between
two nodes, where the strength of connotation in one direction differs
from that in the other direction [Tvemky, 1977].
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w(A ~, 1?) + w(B ~r~ A)
w(A, 1?) =

2d

given w(X +, Y) = maxr – ‘ax’ - Y13
nr(.l )

where ~r is a relation of type r, ~rt is its inverse, d is the
depth of the deeper of the two nodes, mazr and rein, are

the maximum and minimum weights possible for a relation
of type r respectively, and nr (X ) is the number of relations

of type r leaving node X. ❑

The synonym relation gets a weight of zero, while the
nine internode relation types have preliminary weight ranges

aa follows: hypernymy, hyponymy, holonymy, and meronymy
all have weights ranging from 1 to 2. Antonymy arcs all get
the value 2.5 (there is no range).

3.2 Tatal distance minimization

We utilize semantic distance between network nodes, cap-

tured by the weights on the edges along the shortest path
connecting the nodes, aa a measure of relatedness between

the topics represented by the nodes. The shorter the dis-
tance, the greater the relatedness. For disamblguation the

hypothesis is that, given a set of terms occurring near each
other in the text, each of which might have multiple mean-
ings, by pickhg the senses that minimize distance we select
the correct senses.

Overall distance minimization works as follows. For a
given set of terms T = {tI, tz, . . . . t~}, each with possibly

more than one candidate sense} each combination of n seuses
across the terms is tried, with one sense chosen at a time
for each term. For example, given three terms tl, tz ,-t3, with

2, 1, and 3 senses respectively, each of the 6 = 2 .1.3
combinations of senses is tried. For each combination of n
senses, the pairwise distances between each pair of senses is

found. The ~ pairwise distances are summed to arrive

Jat an overall v ue, H(T). The combination of senses which

minimizes this sum is the “winning” combination.

Definition 2

For a set of neighboring terms T = {tI, tZ, .. . . t~ }, let
S be the set of all combinations of term senses, which has

cardhwdity ~~= lt, 1, where Iti I is the number of senses of
~~~~ and let # E S be a particular combination of senses

. . . . s~}, where each SJ is a sense of t~.

The winning combination is the S E S which produces

the minimal “energy”

Hmin (T) = m$ ~ distance (z, y) Vz,y E S.02

We call this technique mutual constraint among terms.

There is a special case of mutual constraint where all terms
except the one being disamblguated have had their senses
determined and “frozen.” Thus they have only one sense to
work with now. When we are trying to disambiguate a term
and work with previous frozen terms only, we speak of using
a frozen past approach.

2diatance(x, y) . dist.znce(y, z) .

d.. t.m.e(s-v)+dist. nc.(y-=)
2

distance(z, z) = 0.

We have experimented with pure mutual constraint, pure

frozen past, and a combination of the two. In all cases there

is a moving window of terms currently in focus as we move
from the beginning of a document towards its end. In the
pure cases there is only a moving window. In the case where
there is both mutual constraint and frozen past, a small set

of initial text terms is processed with mutual constraint.

This sets up a biaa in semantic space for the processing of
subsequent terms. The later terms are then processed with
a moving frozen past window.

Mutual constraint is more appealing conceptually than
frozen past but is exponential in the number of combinations

of term senses that need to be tried. Frozen paat avoids this
combinatorics explosion by reducing the problem to essen-
tially linear-time processing, since there are only as many
“combhations” to try as there are senses of the single term

being disambiguated.
Which term(s) gets its winning sense assigned varies de-

pending on the type of window used. when working with a
frozen paat window of size n, only the (n+ l)st term is as-
signed its sense. Each of the n window terms has already had
its sense frozen. When working with a moving mutual con-

st raint window, just the middle term is assigned its sense.
Record is kept of the winning sense, but when that term

plays a role other than “middle term,” its senses are allowed
to fully vary. This gives a middle term full benefit of both

previous and subsequent context. All senses of surrounding
terms are considered, not just their winning senses. For ini-

tial (as opposed to moving) mutual constraint windows, all
of the terms in the window are assigned their senses at the
same time.

4 Experiments

We have performed a number of disamblguation experiments

with the Time collection. One series of experiments varied
window size and type, and a second series varied network

weighting schemes. Before discussing our experimental re-
sults, we need to cover the subject of measuring performance

during diaambiguation.

4.1 Performance evaluation

How do we measure success in disamblguation? We need

to know what the “right” answer is for each term being dis-
amblguated. This knowledge is provided by manual analysis

and disambiguation of the terms. Because this is tedious and

problematic work, we originally only hand-disambiguated

the first five Time documents.

During that process it became evident that there are a

number of situations that can arise when considering the
input to the disambiguator. Seven situations can be distin-

guished:

1. There are multiple “good” senses — more than one sense
of the input term is applicable in the context in which
the term appears.

2. There is exactly one good sense.

3. There are no applicable senses. This has five variations:

3a. The item is not actually a noun here (e.g. ‘prime”
in “prime minister”)

3b. The item is a noun, but not the one the program
sees (e.g. “cent” from “per cent” )
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3c. The item was found as is, instead of after being
stemmed (“acres” meaning “estate, demesne” in-

stead of the plural of “acre”)

3d. The item is really a proper noun (‘time” as in
Time Magazine)

3e. The item is used in a sense not found in WordNet
( “time” as in “at that time”)

We take these situations into account in deriving our
measure of success or failure in disambiguation. Ah bough

the disambiguator in general works with every word that it
is presented with, we focus only on those terms which have
at least one good sense. In addition, we distinguish between
“trivial” success and “nontrivial” success — words with at

leaat one good sense but with no bad senses are trivial to
disambiguate, since any choice is a success. Only when at
least one sense is good and at least one is bad can we consider
picking a correct sense a success worth rewarding. Thus we
focus on nontrivial terms — those which are true tests of
disamblguation prowess.

One obvious way of evaluating success is to find the per-
centage of terms correctly disambiguated (out of the non-

trivial terms). We will use this “hit-or-miss” measure as
a secondary indicator. Since it does not reflect the diffi-
culty present for individual terms, we have chosen to focus
on another measure that takes this difficulty into account.
This is the “hit score” — the ratio of “actual hit points” to
“maximum hit points.” Hit points are awarded as follows.

Definition 3

For each term let s be the number of senses and let g be
the number of good senses (in context). The hit points for

a hit are s/g - 1. Misses get zero points. 0

The actual hit points for individual terms are summed,

and this sum is divided by the sum of the maximum number
of hit points possible, derived by treating all nontrivial terms

as having been disambiguated correctly and their hit points
awarded accordingly. Formally, hit score over n terms equals

~~=1 hitpoints, where term, is a hit
—., . . .
~~~1 hitpo~nts,

Hit scores range from O to 1.

After manual disambiguation, the first five Time doc-
uments served as a standard against which to measure the

performance of the semantic distance software. During man-
ual disambiguation, the several situations that can arise for

a term which were outlined above were taken into account
when classifying the terms. The large majority of the terms
had at least one good sense. Some basic quantities for the
five documents are:

1175 terms remaining after stopword removal
544 of those are nouns and in WordNet

122
364

58
18
4
6
7

23

486

type 1 terms (multiple good senses)
type 2 terms (one good sense)
type 3 terms (no good senses) as f ollous:
type 3a (not really a noun)
type 3b (wrong noun)
type 3C (unstemmed, taken as k)
type 3d (proper noun)

type 3e (sense not in UordNet)

possible hits (at least 1 good sense)

167 poss. trivial hits (good but no bad senses)
319 poss. nontrivial hits (good and bad senses)

749.9 maximum hit points

As a baseline for comparison, senses were chosen ran-
domly. This “chance” performance yielded expected values

as follows:

nontrivial hits: 124.6

% correct of nontrivial: .391 (124.6 / 319)

hit points: 194.4
hit score: .259 (194.4/ 749.9)

The standard deviation of the distribution of hit scores
obtained from multiple runs of the “chance” software is ap
proximately 0.04. In other words, taking a+ two standard
deviation range, the ‘chance” software will give a hit score
in the range 0.259 + 0.08 with high probabfity. Thus if an

alternative method scores well above 0.259 +0.08=0.339,
it is performing statistically significantly above the “chance”

met hod.
These chance values were derived analytically and then

verified empirically. For 20 empirical random sense selection
runs the average hit score was between .25 and .26.

As ‘chance” provides a lower bound tocompareourre-
sults against, human performance on the same tasks pro-
vides an upper bound. We had human subjects pick their

estimate of the correct sense for each noun in WordNet for
the first five Time documents. Two sets of printouts were
distributed, each with the nouns in documents 1-5. Each

noun’s synset was given, along with its hypernym’s synset
and aglossif available. Thesubjects were thus given roughly

the same sparse information that the software waa getting.

Although thehumans could bring to bear their world knowl-

edge and linguistic knowledge, which should give them a
large advantage, they were also handicapped by only re-

ceiving very local network data (node and parent only). In

contrast, the software has the entire network at its disposrd,

albeit for its limited approach of looking at semantic dis-

tance. Also, the wording within synsets is quite terse and

might not be highly suggestive of the actual sense intended.

Thus, humans might find the information difficult to glean
meaning from.

Averaging over the two tests, the average percent correct
was .782 and the average hit score .706. Of course th~

sample is too small for statistical robustness. Nevertheless,
it succeeds in giving us an idea of how people do under these
same conditions.

For all of the experiments with the software, results are
given for hit score unless otherwise stated. Generally hit
score is more informative than simple percent correct.

4.2 Window variation

In the first series of experiments, window type and size were
varied. First we tried frozen past windows of increasing size,

from 1 to 100. These moving window results are given in
Figures I and 2.

As one can see, success climbs to a point and then ta-
pers off. This may be an effect of local discourse context
size. As can be seen, the semantic distance approach pro-
duces results which are highly statistically significant. This

is all the more significant, given the number of filters that
the input text has gone through, and the amount of “noise”
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Figure 1: Comparison of hit scores for chance, semantic
distance software, and human subiects for Time documents
1-5.
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— chance

--- software

frozen past window size

Figure 2: The same data as in Figure 1 but with the vertical
scale restricted.

— chance
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4-TI——I
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Figure 3: Pinning down the optimal moving frozen past
window; no mutual constraint window.

0.4

0.3

0.2 I I

o 5 10 15

— chance

~ software

initial mutual constraint window size

Figure 4: Initial mutual constraint window with frozen past
window = 41.

in the remaining “signal.” Also, since the semantic net re-

sources used are relatively rudimentary compared to what

they might be potentially, even greater success is possible.

The next experiments attempted to pin down the peak

performance seen near window sizes of 35 and 40. The best
result ws~ with a frozen past window size of 41, .437525. See

Figure 3.
Next, fixing the frozen past window size at 41, we tried

augmenting this with an initial mutual constraint window.
We were unable to proceed psst an initial window size of 14
because the runs were taking exponentially longer. The best
results were with an initial mutual constraint window of size
10, given the frozen past window of size 41 for all subsequent
terms (henceforth ‘(10,41 )“ ). The hit score wss .446771.

All terms within the initial mutual constraint window had
their sense selections fixed simultaneously once the objective
function had determined the winning combhation of senses.
See Figure 4.

We next tried a moving mutual constraint window. By
the time we had made the window size 9, the runs were
taking about three hours, so we stopped there. The results
were t ant alizing, as the hit scores were just getting above .4

at the point where we were forced to halt. See Figure 5.
Note that these runs take longer per window size than

the ones where only the initial terms are processed using

mutual constraint. The moving mutual constraint window
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Figure 5: Moving mutual constraint window, no frozen past
window.
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Figure 7: Uniform weights, initial mutual constraint window
= 10.
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Figure 6: No depth-relative scaling (DRS), initial mutual
constraint window = 10.

runs apply mutual constraint throughout an entire docu-

ment, not just the first set of terms. Thus, instead of a

one-time cost incurred for an exponential number of pair-

wise comparisons, the cost here is incurred roughly n times,
where n is the number of terms in the document.

4.3 Weight variation

In the second series of experiments, we looked at the effects
of varying the network weights in cent rolled ways. In each
case we varied one parameter at a time.

We varied the network edge weights to see the effect on

disambiguation performance. First, we turned off depth-
relative scaling. Interestingly, as shown in Figure 6, the

hit scores over a range of frozen past window sizes with
an initial mutual constraint window fixed at size 10 were
low. This indicates that depth-relative scaling makes an
important difference.

Next, we tried making all weights equal. This gets rid of
weight ranges and differences between relation types. The
results indicate that this makes little difference in the out-

come. Thus, the particular weights used may not make
that much difference. Of course the original ranges were
not that different from each other, nor that wide. The best
results. still with an initial window of size 10 and a movirw

frozen past window size of 41, were lower than with the orig~
inal weighting scheme. So, perhaps weight distinctions and
weight ranges help fine tune the performance. See Figure 7.

frozen past window size

Figure 8: Privileged antonymy, initial mutual constraint =
10, frozen past.

Next we gave antonyms privileged status. Instead of
having the highest weight of 2.5, we gave them the lowest
weight, 0.5. This made negligible difference. See Figure 8.

In the next experiment, we again saw a noticeable change
in behavior. Here we made the network essentially hierarchi-
cal, deemph asizing the part/whole and antonymy relation-

ships and leaving the is- a relations dominant. The results
are plotted in Figure 9.

We see a flat level of success across varying window
sizes, and a mediocre one at that, the scores hovering in

the range bet ween .35 and .36. Thus, alt bough using hier-
archical relationships gives us some power, we need to ex-
ploit the richness of additional relationships between topics
to increase our ability to disambiguate. This is evidence

for the power of mixed-link networks, containing both hi-
erarchical and nonhierarchical relations [Rada et al., 1989;

Kim and Kim, 1990].
Removing type-specific fan out made little difference, but

again the scores were slightly lower wit bout it. See Fig-
ure 10.

Finally, we tried the inverse of emphasizing the hierar-
chical relations. Here, we gave the hierarchical relations
(hypernymy and hyponymy) large weights, ranging between
5 and 10 instead of between 1 and 2. This also made little

difference. See Figure 11.
Other variations both in windowing and in weight varia-

tion are certainlv conceivable. Nevertheless. we have Der-

formed a numb& of preliminary experiments which ~ave
revealed useful insights. Specifically, it seems that depth-
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Figure 9: Strictly hierarchical weighting, where part/whole
and antonymy links are deemph asized; initial mutual con-
straint window = 10, frozen past.
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Figure 10: No type-specific fanout, initial mutual constraint

= 10, frozen past.
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Figure 11: Highly-weighted hierarchical relations, initial
mutual constraint = 10, frozen past.

relative scaling is important. In addition, it would appear

that both hierarchical and nonhierarchical relations make

contributions.
We also looked at another set of five documents to see

if the patterns would hold up. Only a few variations were
tried, rather than the more comprehensive testing that was

performed for the first five documents. Although the scores
were lower, the overall trends of increase and plateauing

were still recognizable. Although the number of terms in
the second batch of documents was only slightly lower (272
vs. 319), the expected hit score was much higher (c. .294).

This was caused by a much higher proportion in the second
batch of ‘high probability” terms, where there were very

few senses for multi-sense terms. In the first batch there had

been a larger number of difficult terms, with many senses.
It is not clear whether this difference made the software
less effective for the second batch. Nevertheless, even with
the results for the second batch included, the software has
performed well.

I Documents 1-5 II Documents 1-10

70 hit 70 hit

I II correct I score II correct I score I

chance .398 .259 .393 .274

(10,41) .558 .447 .531 .418

human .782 .706 — —

Table 1. Summary of disambiguation results for nontrivial
nouns in Time documents 1-5 and 1-10. Results for human

subjects are only available for documents 1-5.

It is important to note that these figures are for the non-
trivial terms only. Although such terms form a significant

portion of the documents, focusing on them might give the
erroneous impression that more than half the terms in a doc-

ument would not be disambiguated properly. The truth is,
taking the other document terms into account, most nouns
in a document will be disambiguated correctly or will not

need to be disamblguated in the first place. Therefore, docu-

ment content will actually be very well represented (at least

at the individual term level).

To substantiate this point, for documents 1 to 5 there

are 544 nouns in WordNet. Of these, only a small percent-
age are invahdated because there is no appropriate sense
(type 3a-3e situations discussed earlier). 486 out of the 544
terms are vrdid. Out of these 486 remaining terms, 319 are
nontrivial and 167 are trivird. Thus we get the 167 trivial
terms correct for free. When we add that number to the
178 nontrivial terms that (10,41 ) disamblguated correctly,
we get 345 hits out of 486. This is 71~0 correct. Of course
we are only looking here at the nouns. If we could bring the

other parts of speech to bear, possibly without even invok-
ing sophisticated natural language processing techniques, we

might strengthen our grasp of document content consider-

ably.

5 Conclusion

We have seen that applying a semantic network to mini-

mize semantic distance takes us a long way towards the goal
of removing extraneous search terms from free-text being
indexed for retrieval. Yet the soph~tication of natural lan-

guage processing required is kept minimal.
The methods that we have employed trade off space for

time — we use large data structures and keep them in main
memory so that the runtime processing effort ia kept to a
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minimum. We do no syntactic analysis nor discourse synthe-
sis, yet we try to exploit some semantics via the network’s
declarative strncture. There is much room for increased so-
phistication in both the linguistic analysis performed and

the richness of information made available in the network.

Also, the network weights might be better optimized, and

the distance determinations refined to a better approxima-
tion of the shortest distance between nodes.

We have seen in this preliminary investigation a num-
berof suggestive indicators. It seems that using the moving

frozen past window gives ascending performance to a point
and then plateaus. The scores are consistently well above

chance. Augmenting this with an initial mutual constraint
window may help somewhat. And, the frozen past technique
only takes linear time, which is an important consideration.
While it is attractive theoretically, the moving mutual con-

straint window gives good results but becomes untenable
with current technology due to exponential increase in pro-

cessing time. If we were willing to settle for an approximate

solution, then we might use a technique such as a genetic

algorithm to locate good combinations.
We have seen that the above-chance performance is ro-

bust under a number of perturbations. For example, making

the network weights uniform, making antonyms privileged,
removing type-specific fanoutj and devaluing the strictly hi-
erarchical relations do not significantly impair performance.
On the other hand, we have seen that depth-relative scaling
and restriction to strictly hierarchicrd relations do noticeably
impair performance, though it remains well above chance.
It is possible that our approach wilf turn out to handle the

full range of indexing; that is, from no keyword assignment
at all up to selective keyword assignment from controlled
vocabularies.
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